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Background: Heart failure (HF) is a global disease with increasing prevalence in an
aging society. However, the survival rate is poor despite the patient receiving standard
treatment. Early identification of patients with a high risk of HF is important but
challenging. Left ventricular end-diastolic diameter (LV-D) increase was an independent
risk factor of HF and adverse cardiovascular (CV) outcomes. In this study, we aimed to
develop an artificial intelligence (AI) enabled electrocardiogram (ECG) system to detect
LV-D increase early.

Objective: We developed a deep learning model (DLM) to predict left ventricular end-
diastolic and end-systolic diameter (LV-D and LV-S) with internal and external validations
and investigated the relationship between ECG-LV-D and echocardiographic LV-D and
explored the contributions of ECG-LV-D on future CV outcomes.

Methods: Electrocardiograms and corresponding echocardiography data within 7 days
were collected and paired for DLM training with 99,692 ECGs in the development set
and 20,197 ECGs in the tuning set. The other 7,551 and 11,644 ECGs were collected
from two different hospitals to validate the DLM performance in internal and external
validation sets. We analyzed the association and prediction ability of ECG-LVD for CV
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outcomes, including left ventricular (LV) dysfunction, CV mortality, acute myocardial
infarction (AMI), and coronary artery disease (CAD).

Results: The mean absolute errors (MAE) of ECG-LV-D were 5.25/5.29, and the area
under the receiver operating characteristic (ROC) curves (AUCs) were 0.8297/0.8072
and 0.9295/0.9148 for the detection of mild (56 5 LV-D < 65 mm) and severe (LV-D
= 65 mm) LV-D dilation in internal/external validation sets, respectively. Patients with
normal ejection fraction (EF) who were identified as high ECHO-LV-D had the higher
hazard ratios (HRs) of developing new onset LV dysfunction [HR: 2.34, 95% conference
interval (CI): 1.78–3.08], CV mortality (HR 2.30, 95% CI 1.05–5.05), new-onset AMI
(HR 2.12, 95% CI 1.36–3.29), and CAD (HR 1.59, 95% CI 1.26–2.00) in the internal
validation set. In addition, the ECG-LV-D presents a 1.88-fold risk (95% CI 1.47–2.39)
on new-onset LV dysfunction in the external validation set.

Conclusion: The ECG-LV-D not only identifies high-risk patients with normal EF but
also serves as an independent risk factor of long-term CV outcomes.

Keywords: artificial intelligence, electrocardiogram, deep learning, heart failure, ejection fraction, left ventricular
end-diastolic diameter, cardiovascular outcome

INTRODUCTION

Heart failure (HF) is a common clinical entity with increasing
prevalence in an aging society, which affects 5.7 million patients
and more than 870,000 new cases are diagnosed in the
United States every year (1). In developed countries, about 2%
of the population lives with HF (1, 2). The American Heart
Association forecasted that total costs associated with HF were
at $20.9 billion in 2012 and are projected to rise to $53.1 billion
by 2030 (3). Currently, HF is classified as reduced ejection
fraction (HFrEF), mildly reduced ejection fraction (HFmrEF),
and preserved ejection fraction (HFpEF) based on different
ejection fraction (EF) levels (4). Multiple modality treatment for
the patients with HF, such as renin-angiotensin system inhibition,
beta-blocker, and aldosterone antagonist, is evidence-based and
recommended in guidelines (4, 5). However, even with treatment,
the HF survival rate remains poor globally and the mortality
ranged from 17 to 45% in a year among the patients who were
admitted to a hospital because of HF (1, 2, 6). Such evidence
points out the significant problem of HF in aged society. Early
identification of those patients who are at risk to develop HF
and adequate risk reduction helps to improve the quality of life,
reduce hospitalization, and promote survival outcomes.

In patients with HF, there were several important parameters
for the assessment of cardiac functional and structural changes.
As EF was the ratio of blood leaving heart each time it contracts,
the left ventricular end-diastolic diameter (LV-D) and end-
systolic diameter (LV-S) influenced the value of ECHO-EF. The
principal ECG changes in patients with increased LV-D and
LV-S in LV hypertrophy include augmented QRS amplitude,
prolonged QRS conduction time, changes in instantaneous and
mean QRS vectors, ST depression and/or T-wave inversion, and
P-wave abnormalities, such as left atrial enlargement (7, 8). VF
frequency was consistently lower in patients with an increased
LV diameter (9). However, these ECG changes were neither

sensitive nor specific for increased LV-D or LV-S detection. The
EF serves as an indicator for cardiac contractility and a significant
predictor of survival (10–13). Previous studies presented that
LV-D increase was an independent risk factor of cardiovascular
outcomes (14, 15), ventricular arrhythmia inducibility (16),
and mortality (17, 18). By the investigation of 1,138 patients
with HFrEF and sinus rhythm, Ito et al. proposed strong
association between LV diameters and cardiovascular (CV)
outcomes, which is independent of ECHO-EF (14). Moreover, in
a combination with QRS duration, the LV-D could be applied
to identify the patients at risk for tachyarrhythmias. Makaryus
et al. revealed myocardial infarction with scar formation or
cardiomyopathy with disordered ventricular excitation accounts
for the ventricular arrhythmia and poor prognosis in patients
with dilated LV-D (16). In patients with mitral regurgitation,
the LV-S increase is independently associated with increased
mortality even under medical management (19). All the
results highlight the significance of EF, LV-D, and LV-S in
patients with HF.

Artificial intelligence-based ECG (AI-ECG) has expanded to
multiple applications and achieved human-level performance,
effectively detecting cardiac diseases with large annotated
ECG datasets, including echocardiogram predictions (20, 21),
arrhythmia detection (22), dyskalemia and its cause (23–25),
glycated hemoglobin (26), digoxin toxicity (27), aortic dissection
(28), pneumothorax (29), and myocardial infarction (30–32).
Importantly, previous studies revealed significant correlation
and predictability between ECG-predicted EF (ECG-EF) and
echocardiographic EF (ECHO-EF). This study not only revealed
the diagnostic value of ECG on HF but also further identified a
new subtype of HF, which has normal ECHO-EF but lower ECG-
EF and a high risk of future LV dysfunction (20). Meanwhile,
age estimated from ECG (ECG-age) is also a measure of
cardiovascular health, and the difference between the ECG-age
and the chronological age can be used as a marker of the risk of
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deaths even in different cohorts (33). The new concept of disease
previvor was proposed as individuals who are healthy but have a
markedly increased predisposition to develop the disease (34, 35).

However, the discrepancy between ECG-EF and ECHO-EF
was not fully interpreted. ECHO-EF is evaluated regularly
in echocardiography, similar to other cardiac structure
measurements, such as LV-D, LV-S, interventricular, and
posterior wall thickness. With the aid of AI-ECG, we
hypothesized that AI-ECG predicting LV-D (ECG-LV-D)
may provide additional information on CV outcomes in patients
with initially normal ECHO-EF, who are recognized as low
ECG-EF. Therefore, the aim of this study is to build a deep
learning model (DLM) to predict LV-D and LV-S and verify the
accuracy by echocardiography in two independent hospitals.
Finally, we tried to apply ECG-LV-D in different clinical
scenarios and acquire additional information on the prediction
of future CV diseases.

MATERIALS AND METHODS

Data Source and Population
This multicenter retrospective study was ethically approved by
the institutional review board of Tri-Service General Hospital,
Taipei, Taiwan (IRB NO. C202105049). The electronic medical
records (EMRs) of our hospital included digital ECG signals,
echocardiography images, hospital courses records, and future
outcomes between 1 January 2010 and 31 September 2021. We
identified patients who had at least one pair of 12-lead ECG
and transthoracic echocardiography (TTE) records within 7 days.
Subjects with inadequate ECG or echocardiographic information
were excluded, such as noise interference, leads dislodge or
dislocation, data loss of heart rate, EF, LV-D, or LV-S. The
remaining ECGs were annotated by TTE information collected
in this study. Finally, there were 75,942 patients in NeiHu
General Hospital at NeiHu District (hospital A), an academic
medical center in our hospital system, and 11,633 patients in
Tingzhou Branch Hospital at Zhongzheng District (hospital B),
a community hospital (Figure 1).

We divided ECGs into development, tuning, internal
validation, and external validation sets by different dates and
hospitals. For DLM training, there were 99,692 ECGs from 60,790
patients included in development set and 20,197 ECGs from
7,601 patients were included in tuning set. We only used the first
records in the validation step for the patients with multiple ECG-
TTE pairs, and the internal and external validation sets included
7,551 ECGs before 31 December 2015 in hospital A and 11,644
ECGs in hospital B. No repeated patients were recruited into
more than one group.

Observational Variables
The ECGs were acquired at a sampling rate of 500 Hz with a 10-s
period using a Philips 12-lead ECG machine (PH080A, Philips
Medical Systems, 3000 Minuteman Road Andover, MA 01810
United States). Comprehensive 2D ECG and quantitative data
were recorded at the time of the acquisition in a Philips image
system for all patients. The LV parameters included EF, LV-D, and

LV-S, which were routinely acquired by experienced cardiologists
or technicians using standardized methods. The EF was assessed
using the Simpson method, M-mode, and the reported visually
estimated EF. LV dimensions and wall thickness were measured
by M mode under para-sternal long axis view and recorded by
millimeter. The cut-off values of EF are 50 and 35% as mild and
severe LV dysfunction, which are comparable criteria described
in previous studies (20, 34, 36, 37). We selected LV-D and LV-S as
they can be measured more easily and are more reproducible than
other indices. Patients were divided into three groups according
to LV-D at initial echocardiography: ≤ 56 mm (normal), 56 < LV-
D ≤ 65 mm (mild increase), and > 65 mm (severe increase). The
criteria for LV-S were ≤ 38 mm (normal), 38 < LV-S ≤ 45 mm
(mild increase), and > 45 mm (severe increase). These diameters
were determined according to the reference values for LV size
from studies based on ethnic-appropriate population datasets
(18, 38–43).

The demographic characteristics were obtained in our EMRs
and disease history before the index date of ECG was collected
using the corresponding code of International Classification
of Disease, Ninth Revision and Tenth Revision (ICD-9 and
ICD-10, respectively), as described previously (24, 26, 32,
44). The remaining echocardiographic parameters, such as
interventricular septum (IVS) diameter, left ventricular posterior
wall (LVPW) diameter, left atrium (LA) size, aortic root (AO)
diameter, right ventricular (RV) diameter, pulmonary artery
systolic pressure (PASP), and pericardial effusion (PE), were also
collected in this study.

According to the promising ability of disease previvor
identification by AI-ECG, we analyzed the correlation between
ECG-LV-D increased and new-onset LV dysfunction, defined as
ECHO-EF ≤ 35. Moreover, patients’ data were censored at the last
known TTE examination to limit bias from incomplete records.
In addition to LV dysfunction, we followed and analyzed other
three CV outcomes, including CV mortality, new-onset acute
myocardial infarction (AMI), and new-onset coronary artery
disease (CAD). CV mortality included arrhythmia-related death,
acute coronary syndrome-related death, stroke death, and HF-
related death. These outcomes were censored at the patient’s last
known hospital alive encounter without corresponding events to
limit bias from incomplete records. The end of follow-up in this
study was 30 September 2021 for all the above outcomes.

The Implementation of the Deep
Learning Model
The ECG-based EF, LV-D, and LV-S were, respectively,
considered as function score and structure status of the heart,
both estimated by DLMs. The ECG12Net architecture with 82
convolutional layers and an attention mechanism was used for
estimation and the technology details, such as model architecture,
data augmentation, and model visualization, were described
previously (24). We used an oversampling process to adequately
recognize extreme EF, LV-D, and LV-S values. The process was
based on weights computed based on the prevalence of 20
equidistant intervals in the development set. The output of these
DLMs was a continuous estimation value of actual EF, LV-D,
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FIGURE 1 | Development, tuning, internal validation, and external validation sets generation and the ECG labeling of echocardiogram. Schematic of the dataset
creation and analysis strategy, which was devised to assure a robust and reliable dataset for training, validating, and testing of the network. Once a patient’s data
were placed in one of the datasets, that individual’s data were used only in that set, avoiding “cross-contamination” among the training, validation, and test datasets.
The details of the flowchart and how each of the datasets was used are described in “Materials and Methods” section.

and LV-S, which was called ECG-EF, ECG-LV-D, and ECG-LV-
S, respectively.

Statistical Analysis and Model
Performance Assessment
Patient characteristics are presented as numbers of patients,
population percentages, means, and standard deviations (SDs),
with the significance level set as p < 0.05. We used scatter
plots to describe the predicted value by ECG voltage-time
traces compared with actual EF and left ventricular diameters
(LV-D/LV-S). The accuracy of DLMs was evaluated by mean
difference (Diff), Pearson’s correlation coefficients (r), and mean
absolute errors (MAEs), calculated in both internal and external
validation sets. The diagnostic value of DLMs was measured
with the receiver operating characteristic (ROC) curve and the
area under the curve (AUC). The tuning set was used to decide
the operating point based on the maximum of Yunden’s index,
which was calculated for the corresponding sensitivity, specificity,
positive predictive value (PPV), and negative predictive value
(NPV) in both validation sets. To identify the underlying subtype
of patients with no correspondence between ECG-EF and ECHO-
EF, the proportion of patients with larger ECHO/ECG-LV-D
were explored in diverse ECHO/ECG-EF groups for the disease
previvors of future LV dysfunction.

The relationship between traditional ECG features and
AI-ECG-based ECG-LV-D was also analyzed. We showed
the importance rank of different traditional ECG features,
including 31 diagnostic pattern classes and 8 continuous ECG
measurements based on an automatic Philips analysis system.
These features were used to train an eXtreme gradient boosting
(XGB) model to predict ECG-LV-D. To identify the most

important ECG features in this analysis, the stepwise program
was used and the p-value to enter and to remove were 0.05 and
0.15, respectively.

To investigate the long-term incidence of developing new-
onset LV dysfunction, we plotted Kaplan–Meier curves of
patients with an initially normal EF (EF > 50%), stratified by
ECG-EF, left ventricle (end-diastole) diameter (LV-D), and ECG-
LV-D. Multivariable Cox proportional hazard models were used
to evaluate the predictive ability of ECG-EF, ECHO-LV-D, and
ECG-LV-D adjusted by gender and age on all outcomes of
interested, presenting in hazard ratios (HRs) and 95% conference
intervals (95% CIs). We assessed the risk of adverse CV outcomes
in patients with different ECG-EF/ECG-LV-D using a Cox
proportional hazard model after adjusting by gender and age
and demonstrated the risk matrixes of different outcomes with
HRs and the concordance statistic (C-index), which were used
to quantify their contributions. All the statistical analyses were
conducted in R software, version 3.4.4.

RESULTS

The baseline characteristics of patients, including disease
histories and echocardiographic data are presented in Table 1
for the development, tuning, internal validation, and external
validation sets. In internal and external validation sets, 3,810
(50.5%) and 5,760 (49.5%) patients were men, and mean age
was 63.4 and 65.7 years, respectively. According to disease
history, there were 2,248 (29.8%) and 3,612 (31.0%) patients
with diabetes mellitus (DM), 3,938 (52.2%) and 6,435 (55.3%)
with hypertension (HTN), 3,125 (41.4%) and 5,176 (44.5%) with
hyperlipidemia (HLP), 245 (3.2%) and 270 (2.4%) with AMI,
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TABLE 1 | Baseline characteristics.

Development Tuning Internal validation External validation

Demography

Sex (male) 50,925 (53.6%) 10,600 (52.5%) 3,810 (50.5%) 5,760 (49.5%)

Age (years) 63.8 ± 17.4 68.0 ± 16.3 63.4 ± 16.6 65.7 ± 18.1

BMI (kg/m2) 24.6 ± 4.4 24.3 ± 4.4 24.5 ± 4.4 24.5 ± 4.3

Disease history

DM 22,471 (23.6%) 7,211 (35.7%) 2,248 (29.8%) 3,612 (31.0%)

HTN 38,268 (40.3%) 11,778 (58.3%) 3,938 (52.2%) 6,435 (55.3%)

HLP 28,542 (30.0%) 9,088 (45.0%) 3,125 (41.4%) 5,176 (44.5%)

CKD 22,821 (24.0%) 8,820 (43.7%) 1,848 (24.5%) 2,896 (24.9%)

AMI 6,062 (6.4%) 2,099 (10.4%) 245 (3.2%) 279 (2.4%)

STK 13,055 (13.7%) 4,548 (22.5%) 1,274 (16.9%) 2,169 (18.6%)

CAD 26,382 (27.8%) 8,285 (41.0%) 2,358 (31.2%) 3,630 (31.2%)

HF 12,488 (13.1%) 4,777 (23.7%) 957 (12.7%) 1,484 (12.7%)

Afib 6,429 (6.8%) 2,570 (12.7%) 501 (6.6%) 754 (6.5%)

COPD 11,874 (12.5%) 4,372 (21.6%) 1,502 (19.9%) 2,758 (23.7%)

Echocardiography data

EF (%) 63.6 ± 12.6 61.1 ± 14.2 65.3 ± 11.4 65.5 ± 10.8

LV-D (mm) 47.5 ± 7.1 47.9 ± 7.8 47.3 ± 7.1 47.1 ± 6.8

LV-S (mm) 30.3 ± 6.9 31.2 ± 7.8 29.8 ± 6.7 29.6 ± 6.3

IVS (mm) 11.2 ± 2.6 11.5 ± 2.6 11.2 ± 2.6 11.1 ± 2.6

LVPW (mm) 9.3 ± 1.7 9.5 ± 1.8 9.3 ± 1.7 9.1 ± 1.7

LA (mm) 38.4 ± 7.5 39.6 ± 8.0 38.6 ± 7.6 38.7 ± 7.3

AO (mm) 32.7 ± 4.4 33.1 ± 4.4 32.9 ± 4.5 32.8 ± 4.3

RV (mm) 23.7 ± 4.9 24.2 ± 5.1 24.1 ± 5.0 24.0 ± 5.0

PASP (mmHg) 33.3 ± 11.1 34.8 ± 12.4 32.2 ± 10.4 33.0 ± 10.7

PE (mm) 0.5 ± 2.1 0.6 ± 2.1 0.3 ± 1.8 0.4 ± 1.7

BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; HLP, hyperlipidemia; CKD, chronic kidney disease; AMI, acute myocardial infraction; STK, stroke; CAD,
coronary artery disease; HF, heart failure; Afib, atrial fibrillation; COPD, chronic obstructive pulmonary disease; EF, ejection fraction; LV-D, left ventricle (end-diastole); LV-S,
left ventricle (end-systole); IVS, Inter-ventricular septum; LVPW, left ventricular posterior wall; LA, left atrium; AO, aortic root; RV, right ventricle; PASP, pulmonary artery
systolic pressure; PE, pericardial effusion.

2,358 (31.2%) and 3,630 (31.2%) with CAD, and 957 (12.7%) and
1,484 (12.7%) with HF. The echocardiographic characteristics
are similar between internal and external validation sets, such
as EF (65.3%/65.5%), LV-D (47.4 mm/47.1 mm), and LV-S
(29.8 mm/29.6 mm).

Figure 2 demonstrated the accuracy of DLMs with the
scatter plots of ECG-based LV parameters compared to actual
ones. The ECG-EF showed a high correlation with the Diff of
1.23 ± 10.52/1.21 ± 10.45, Pearson’s correlation coefficients (r)
of 0.59/0.56, and MAEs of 7.95/7.91 in the internal/external
validation set, respectively. Meanwhile, the similar correlation
was observed in our analysis of ECG-LV-D and ECG-LV-S,
with Diff of 0.03 ± 6.75/0.86 ± 6.27, r of 0.53/0.59, and
MAE of 5.26/4.83 in the internal validation set, and Diff of
0.06 ± 6.81/0.78 ± 6.40, r of 0.49/0.53, and MAE of 5.29/4.93 in
the external validation set.

The ROC curve analysis was used to test the diagnostic
value of AI-enabled ECG parameters (Figure 3). The AUCs of
ECG-EF for mild/severe reduced EF in the internal validation
set were 0.8793/0.9618, with a percentage of sensitivity of
69.6/86.8, specificity of 89.1/92.5, PPV of 42.4/28.3, and NPV
of 96.2/99.5. Meanwhile, the AUCs of ECG-LV-D for detecting
mild/severe increased ECHO-LV-D were 0.8297/0.9295 with the

percentage of sensitivity of 66.6/80.2, specificity of 82.2/88.1,
PPV of 27.4/9.5, and NPV of 96.1/99.7, and the AUCs of
ECG-LV-S were 0.8821/0.9471 with the percentage of sensitivity
of 70.1/87.0, specificity of 88.3/89.6, PPV of 35.2/20.9, and
NPV of 97.0/99.5. The external validation analysis validated the
generalization ability of DLMs in a heterogeneous population
(AUC = 0.8816/0.9447 in ECG-EF, 0.8072/0.9148 in ECG-LV-
D, and 0.8485/0.9363 in ECG-LV-S). These results revealed the
possibility to detect abnormal EF/LV-D/LV-S via ECG accurately.

Subgroup analysis was stratified by the different clinical
settings and comorbidities in Figure 4. DLM performed better
in patients from the out-patient department (OPD) than those
from the emergency room (ER) or the inpatient department
(IPD). Compared to patients without comorbidities, ECG-EF,
ECG-LV-D, and ECG-LV-S had lower AUC in patients with
comorbidities, especially in patients with a history of AMI.
These comorbidities may be potential confounding factors for
new-onset LV dysfunction (45, 46). In other words, electrical
abnormalities induced by comorbidities may cause ECG changes
that interfere with the performance of our DLM.

In the previous study, we noticed patients with low ECG-
EF and normal ECHO-EF had a higher incidence of future
LV dysfunction. We hypothesized that the disease previvor was
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FIGURE 2 | Scatter plots of predicted value via ECG voltage–time traces only compared with the actual ejection fraction (EF) and left ventricle
(end-diastole/end-systole) (LV-D/LV-S). The x-axis indicates the actual value and the y-axis presents the ECG-predictions. Red points represent the highest density,
followed by yellow, green light blue, and dark blue. We presented the mean difference (Diff), Pearson’s correlation coefficients (r), and mean absolute errors (MAEs) to
demonstrate the accuracy of a deep learning model (DLM). The black lines with 95% conference intervals (CIs) are fitted via simple linear regression.

associated with obscure structural abnormalities, which could
be detected by ECG-LV-D before actual LV dilation. Our DLM
exhibited similar performance in predicting the size of LV-D and
LV-S (Figure 3). Due to the similar clinical meaning of LV-S
and LV-D in association with EF, we applied LV-D for further
analysis. Figure 5 presents the scatter plots of predicted and
actual EF correlated with LV-D. Initially, we applied ECHO-LV-
D in the internal validation set but only 15.2% of patients with
low ECG-EF and normal ECHO-EF were identified as the mild
increase (>56 mm) in the internal validation set, however, the
percentage increased to 65.8% in ECG-LV-D application group.
In the external validation set, the percentage increased from 20.0
to 61.1% similarly. These results may reveal the importance of
ECG-LV-D on previvors detection.

Figure 6 demonstrated the relationship between known ECG
features and ECG-LV-D. Our DLM identified those patients
with increased ECG-LV-D were associated with the ECG

features of ischemia/infarction, atrial fibrillation, tachycardia,
left ventricular hypertrophy, widening QRS duration, prolonged
PR interval, prolonged QT interval, augmented QRS amplitude,
higher T-wave axis, lower RS wave axis, and lower P-wave
axis compared to the ECG of normal patients. The explainable
variation of known ECG features for DLM-based ECG-LV-D was
41.89 and 37.28% in the internal and external validation sets,
respectively, which suggested that DLM could extract more than
50% additional information from raw ECGs.

In Figure 7, a long-term incidence of developing a new-
onset LV dysfunction in the patient with initially normal EF was
presented. We stratified by ECG-EF, ECHO-LV-D, and ECG-LV-
D and defined normal patient groups as reference. There were
6,083 patients and 9,281 patients at risk cases and the cumulative
incidence rates in the low ECG-EF (false positive) group were
percentages of 32.0/44.4/44.4 and 31.7/36.0/52.0 at 2/4/6 years
in the internal and external validation sets, respectively, with
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FIGURE 3 | Receiver operating characteristic (ROC) curve analysis for mild to severe left ventricle abnormality from deep learning model based ECG voltage–time
traces. The ROC curve (x-axis = specificity and y-axis = sensitivity) and area under ROC curve (AUC) were calculated using the internal validation set (A) and external
validation set (B). The operating point was selected based on the maximum of Yunden’s index in tuning set, which was used for calculating the corresponding
sensitivities and specificities in two validation sets.
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Internal validation set External validation set

FIGURE 4 | Stratified analysis for model performance for predicting electrocardiogram-based ejection fraction (ECG-EF), left ventricular end-diastolic diameter
(LV-D), and left ventricular end-systolic diameter (LV-S). The analyses were stratified by the disease histories or data source. The AUC and 95% CIs were presented
based on LV EFs and diameters. ER, Emergency room; IPD, inpatient department; OPD, outpatient department; DM, diabetes mellitus; HTN, hypertension; HLP,
hyperlipidemia; CKD, chronic kidney disease; AMI, acute myocardial infarction; STK, stroke; CAD, coronary artery disease; HF, heart failure; Afib, atrial fibrillation;
COPD, chronic obstructive pulmonary disease (COPD).

corresponding significant gender-age adjusted HRs (95% CI)
of 5.91 (3.58–9.78) and 5.63 (3.55–8.93). The C-index analyses
also show the significant prognostic value on new onset LV
dysfunction of 0.774 (95% CI: 0.753–0.7950) and 0.791 (95%
CI: 0.773–0.808), which emphasized the importance of ECG-EF.
In the analyses of ECHO-LV-D and ECG-LV-D, the significant
gender-age adjusted HRs demonstrated the contributions on
new-onset LV dysfunction in both validation sets. The HRs
of severe/mild ECG-LV-D increase was 7.30 (95% CI 3.61–
14.77)/3.12 (95% CI 2.41–4.03) in the internal validation set
and 5.51 (95% CI 2.85–10.66)/2.65 (95% CI 2.11–3.33) in the
external validation set. The C-indexes were higher in ECG-LV-
D (0.750, 95% CI 0.727–0.772) than in ECHO-LV-D (0.723,
95% CI 0.699–0.747) in internal validation set, which was

consistent in external validation set [0.750 (95% CI: 0.730–0.769)
vs. 0.737 (95% CI 0.718–0.757)]. It suggested that ECG-LV-D
may be a better differential indicator than ECHO-LV-D, which
supplements the ECG-EF to identify patients at the risk of LV
dysfunction in future.

Figure 8 shows the risk matrixes of different ECG-EF and
ECG-LV-D on adverse events in patients with normal ECHO-EF.
The patients with increased ECG-LV-D were more susceptible to
adverse CV outcomes. Combining ECG-EF and ECG-LV-D, the
gender-age-adjusted HRs increased to 4.60 (95% CI 3.17–6.68),
4.31 (95% CI 1.68–11.07), 4.80 (95% CI 2.78–8.28), and 2.23
(95% CI 1.65–3.31) on new-onset LV dysfunction, CV mortality,
new-onset AMI, and CAD, respectively. Moreover, the ECG-
LV-D independently provided the ability of risk stratification
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FIGURE 5 | Scatter plots of predicted and actual EF correlated with LV-D. The x-axis indicates the actual EF and the y-axis presents the ECG-EF. Green to red
points represent the small and large predicted and actual LV-D, respectively. The percentages were the proportion of people with an ECHO/ECG LV-D > 56 mm in
each ECHO and ECG EF group.
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FIGURE 6 | Relationship between most important ECG features and ECG estimated left ventricle (end-diastole) (ECG-LV-D). The related importance is based on the
information gain of eXtreme gradient boosting (XGB) model, and the R-square (R-sq) is the coefficient of determination to use selected ECG features for predicting
ECG-LV-D. The AI-ECG predictions were classified as ECG-normal (ECG-LV-D ≤ 56) and ECG-abnormal (ECG-LV-D > 56). The analyses are conducted both in
internal and external validation sets (***p < 0.001).

on new-onset LV dysfunction (HR 2.34, 95% CI 1.78–3.08), CV
mortality (HR 2.30, 95% CI 1.05–5.05), new-onset AMI (HR 2.12,
95% CI 1.36–3.29), and CAD (HR 1.59, 95% CI 1.26–2.00) in
the internal validation set, and achieved similar trends with 1.88-
fold-risk (95% CI 1.47–2.39) of new-onset LV dysfunction in
the external validation set. In the consideration of confounding
bias, we further adjusted more potential confounding factors,
such as comorbidities. Our data indicated that the trend of
results was similar with results adjusted by gender, age, and
comorbidities (Supplementary Figure 1), which emphasized the
importance and independency of ECG-EF and ECG-LV-D on
early identification of HF risk.

DISCUSSION

In this study, we reported an AI-ECG DLM including more
than 110,000 pairs of ECG and echocardiographic data and
analyzed the longitudinal data, such as EF reduction, mortality,
and adverse CV outcomes. Our DLM predicts ECG-EF accurately
with the high AUCs of 0.9618/0.9447 for reduced EF detection
(EF ≤ 35%) in the internal/external validation set, respectively.

The high correlation between ECHO-EF and ECG-EF suggested
the latter is a potential diagnostic tool. Severe/mild ECG-LV-
D increase with the AUCs of 0.9295/0.8297 and 0.9148/0.8072
in internal/external validation set, which exhibited its valuable
diagnostic power in patients with normal ECHO-EF. Moreover,
we found a higher prevalence of ECG-LV-D increase in patients
with low ECG-EF. Of these false positive patients, gender and
age-adjusted HRs of future LV dysfunction were significantly
high, suggesting that the DLM identified high-risk patients.
Most importantly, the ECG-LV-D additionally contributes to
predicting future LV dysfunction, which may provide the
information of prognosis independently. The HRs of adverse CV
outcomes increased significantly in patients identified as high
ECG-LV-D and low ECG-EF compared with those with normal
ECG-LV-D and ECG-EF. This is the first research to describe AI-
enabled ECG-LV-D, which was demonstrated with high accuracy
for the prediction of future LV dysfunction in patients with
initially normal ECHO-EF.

Heart failure is an increasing problem affecting more than
30 million people globally. In these patients, asymptomatic
LV dysfunction (ALVD, EF < 50%) patients are difficult to
diagnose, who account for 7.9–23% of population (4, 5). Patients
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FIGURE 7 | Long-term incidence of developing a new-onset left ventricular dysfunction (LVD, EF ≤ 35%) in patients with an initially normal EF (EF > 50%) stratified
by ECG-EF, LV-D, and ECG-LV-D. The C-index is calculated based on the continuous value combined with sex and age. The analyses are conducted both in internal
and external validation sets. The table shows the at-risk population and cumulative risk for the given time intervals in each risk stratification.

with ALVD were associated with the reduced quality of life,
increased hospitalization, morbidity, and mortality (47, 48).
Although current evidence highlights the significance of ALVD
and emphasized the early intervention to these patients, there
is no effective tool to screen patients with ALVD (49–53). In
previous studies for LV dysfunction detection, Kwon et al. proved
that the DLM outperformed other machine-learning methods
(54). Even with different sex, age, and body mass index, Attia et al.
and Cho et al. have demonstrated ECG-EF performance stability
and robustness in internal and external validation sets (36, 55,
56). Our DLM exhibits excellent predictive performance in ECG-
EF and ECG-LV-D. The concept of ECG-LV-D is proposed
to expand the application of ECG-EF and tried to explain
the discrepancy between ECG-EF and ECHO-EF. ECG-LV-D
is thought to be a structural indicator with subtle electrical

signal changes which provides critical information that helps
to early identify those patients who are at risk to develop LV
dysfunction. In combination with ECG-EF, the diagnostic power
significantly enhanced, which could be applied for large-scale
screening and for patients with asymptomatic HF to improve
their CV outcomes.

There are several ECG changes in LV-D increase. In
dilated cardiomyopathy (DCM), about 80% of patients had
ECG abnormalities, including LV hypertrophy, left/right atrial
enlargement, left/right bundle branch block, abnormal Q
wave, atrial fibrillation, first-degree atrial-ventricular block,
and T-wave inversion in inferior and anterolateral leads (57).
Merlo et al. demonstrated that LV hypertrophy, increased heart
rate, and anterior T-wave inversion predicted death or heart
transplantation in patients with DCM and ECHO-EF < 50%
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FIGURE 8 | Risk matrixes of different predicted ejection fraction (ECG-EF) and left ventricle (end-diastole) (ECG-LV-D) groups on adverse events in patients with an
initially normal EF (EF > 50%). The hazard ratios (HRs) are based on the Cox proportional hazard model adjusted by gender and age. The color gradient represents
the risk of corresponding group, and the non-significant results are defined as white.

(58). Previous studies proposed that delayed LV conduction
with QRS prolongation (≥ 120 ms) was associated with
restrictive LV filling, more advanced myocardial disease, worse
LV function, poorer prognosis, and a higher all-cause mortality
rate (59, 60). We found that our DLM was strongly correlated
with prolonged QRS duration, which partly explained why
the patients with high ECG-LV-D had a higher risk of
LV dysfunction compared to patients with normal ECG-
LV-D. Meanwhile, the possible mechanisms underlying the
interference of DLM performance among patients with AMI
could be myocardial scarring, which may affect electrical
vectors, create regions of slowed conduction, and re-entrant
circuits supporting sustained ventricular tachycardia (61, 62).
Along with ECG-EF, the ECG-LV-D performed significantly
better prediction capacity on new-onset LV dysfunction, CV
mortality, new-onset AMI, and CAD compared to ECG-EF
alone in the internal validation set. However, in the external
validation set, in which the data from mild disease patients
in community hospital, only the prediction of LV dysfunction
could be significantly enhanced. Possible reasons underlying the
inconsistency include different patient population and disease
severities. Considering the better performance of our DLM in
patients with less comorbidities from OPD than those from
ER or IPD, our DLM could be more suitable for community
screening than for hospitalized patients. Further large-scale
studies are needed to confirm the combination effects of ECG-
LV-D and ECG-EF.

The clinical application of AI-ECG is a worldwide tendency
and developed rapidly. As the AI-ECG could predict the disease
development in healthy individuals without abnormal imaging
findings or symptoms, the concept of previvors was proposed
recently. With apparent false positive AI-ECG findings, patients
with a higher risk of many diseases, such as LV dysfunction
(20), future atrial fibrillation (63), hyperkalemia (64), and elder
heart age (44), could receive preventive interventions or medical
surveillance early.

The importance and clinical significance of our ECG-LV-
D should be emphasized. Both ECG-EF and ECG-LV-D are
promising screening tools for patients who had a high risk
of future LV dysfunction. The advantage of timely HF risk
identification is evident to prevent adverse CV events and reduce
medical costs. Moreover, from a large community-based study of
sudden cardiac death (SCD), LV-D may contribute to the risk of
SCD independent of the EF (41). The ECG-EF and ECG-LV-D
models could be applied for risk stratification in patients with
HF, especially those with stage A or B HF (65). Importantly,
the wearable devices with ECG-EF and ECG-LV-D algorithms
would provide timely conditions and beneficial effects for high-
risk patients. Finally, considering that ECG is widely used and
is a standardized examination in a rural or remote hospital,
the AI-ECG could analyze and alert physician automatically
and immediately among these areas. Further community-based
studies of ECG-LV-D application are necessary to validate clinical
benefits on HF patient care.
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There are some limitations to this study. First, this study was a
retrospective study. Although ECG/ECHO pairs were collected
and the DLM was validated, the accuracy in different hospital
settings and prospective studies are necessary to generalize
the application of ECG-LV-D and promote treatment strategy.
Second, the clinical impact of treatment is needed to verify.
The actual benefit of ECG-LV-D import to clinical practice
is not clear now. Investigation of clinical benefits including
accidental HF detection, time reduction, prognosis management,
and outcomes evaluation should be conducted. Third, the best
application of AI-ECG is to screen asymptomatic patients
with HF, but the relationship between abnormal ECG and HF
symptoms was unclear. Future study should conduct a large-scale
community screening to validate the benefit in asymptomatic
patients with HF. Fourth, AI-ECG performed worse in patients
with more comorbidities, especially in patients with a history
of AMI. Interestingly, even after the adjustment of all the
confounding factors, our models of ECG-EF and ECG-LV-D
still provide significant predictive power for newly onset LV
dysfunction. Finally, the DLM design is an uninterpretable set of
methods, such as a black box, and full interpretability will be a
focus of future work.

In conclusion, our AI-ECG DLM could identify patients with
high ECG-LV-D and predict future LV dysfunction. ECG-LV-D
serves as an independent risk factor of long-term CV outcomes
in patients with normal ECHO-EF and low ECG-EF. The
combination of ECG-EF and ECG-LV-D provides significantly
synergistic diagnostic power to predict patients with future LV
dysfunction. Although further studies are needed, our ECG-LV-
D could be used as a screening tool for patients with normal
EF but with high cardiovascular risk to initiate appropriate
treatment in time.
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